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Lorentz Group

Our first encounter with the Lorentz group is in special relativity it
composed of the transformations that preserve the line element in
Minkowski space (s? = n,z”z”). In particular, for ¥ — z/* = Az,
we get:

AL g = Tpo
Or in matrix notation A satisfy the following relation:
ATnA=n = OO0 =n
Where 7 is the matrix:
n =diag(l,-1,—1,-1)

Using our group theory language the Lorentz group is just the
indefinite orthogonal group O(1, 3)
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4 |slands, 2 Boats

The Lorentz group consists of four separated components:

° El: det A =1 and A§ > 1.
o L1 det A=—1and A§>1.
° Li: det A=1and AJ < —1.

o L':det A=—1and A< —1.

The subgroup of the Lorentz group that exclude spatial reflections and

time reversal is called the proper orthochronous Lorentz group
SOT*(1,3).
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G ° Li: det A=1and AJ < —1.

o L':det A=—1and A< —1.

The subgroup of the Lorentz group that exclude spatial reflections and
time reversal is called the proper orthochronous Lorentz group
SO™(1,3). There are two discrete transformations P and T

c=clucluchuct
=ctupclurcl uprcl

We get the decomposition of L into cosets of the restricted group L',l.
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Usually we have two possible choices for the Minkowski metric:

@ West Coast metric (1,—1,—1,—1). Feynman's favorite

e East Coast metric (—1,1,1,1). The choice of Weinberg and
Schwinger (also Ross and Joey?)

Peter Woit has a nice blog entry about this: "...physicists dont
appreciate the mathematical concept of real structure or

complexification.” and "...pseudo-Majorana spinors a nebulous concept
best kept undisturbed.”

@ Why not both? UCSC does not discriminate against metrics.
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Group Peter Woit has a nice blog entry about this: "...physicists dont
appreciate the mathematical concept of real structure or

complexification.” and "...pseudo-Majorana spinors a nebulous concept
best kept undisturbed.”

@ Why not both? UCSC does not discriminate against metrics.
Checking some books, I remembered one other intriguing recent choice, that of Michael

Dine, who wrote the first half of his book (the QFT part) in the West Coast metric, but the
second half (the string theory part) in the East Coast metric.

Update: For those interested in how to translate back and forth between Coasts in the
two-spinor notation, I noticed that Dreiner, Haber and Martin have written review papers,
with a line in the tex that lets you choose which Coast. See here and here.

Link: http://www.math.columbia.edu/~woit/wordpress/
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Generators of the Lorentz group

An infinitesimally Lorentz transformation A% should be of form,
AL =08 +wh

Where with w# is a matrix of infinitesimal coefficients. Plugging in our
definition of Lorentz group and keeping O(w?), we have:

Npo = Ag"huAZ
Npo = (55 + WZL) Nuv (5Z + wg)
Npo = Npo + Wpo + Wop
0=wps +wesp
We conclude that w,, = —ws, Thus the generators w are 4 x 4

antisymmetric matrices characterized by six parameters so that there
are six generators.
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Generators of the Lorentz group

An infinitesimally Lorentz transformation A% should be of form,
AL =08 +wh

Where with w# is a matrix of infinitesimal coefficients. Plugging in our
definition of Lorentz group and keeping O(w?), we have:

Npo = Ag"huAZ
Npo = (55 + WZL) Nuv (5Z + wg)
Npo = Npo + Wpo + Wop

0=wps +wesp

We conclude that w,, = —ws, Thus the generators w are 4 x 4
antisymmetric matrices characterized by six parameters so that there
are six generators. We already know these six parameters: 3 rotations

about orthogonal directions in space and 3 boosts along these same
directions.
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Boost and Rotations

The rotations can be parametrized by a 3-component vector 6; with
|0;] < 7, and the boosts by a three component vector 3; (rapidity)
with || < co. Taking a infinitesimal transformation we have that:
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Boost and Rotations

The rotations can be parametrized by a 3-component vector 6; with
|0;] < 7, and the boosts by a three component vector 3; (rapidity)
with || < co. Taking a infinitesimal transformation we have that:
Infinitesimal rotation for x,y and z:

0 0 0
a—il © S 0 1 I U
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Boost and Rotations

The rotations can be parametrized by a 3-component vector 6; with
|0;] < 7, and the boosts by a three component vector 3; (rapidity)
with || < co. Taking a infinitesimal transformation we have that:
Infinitesimal rotation for x,y and z:

0 0 0
. 0 . 0 1 . 0 -1
Ji=i 0o 1| B 0 =il
1 0 -1 0 0
Infinitesimal boost:
-1 0 -1 0 -1
1 0 0 0
K1 =1 0 K2 =1 1 0 K3 =1 0
0 0 -1 0

These matrices are the generators of the Lorentz Group (4-vector basis)
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Lie Algebra of the Lorentz Group

Having the generation of any representation we can know the Lie
algebra of the Lorentz Group.

[Ji, Jj] = deijpdi
[Ji,Kj] ieiijk
[Ki,Kj] = —ieiijk
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Lie Algebra of the Lorentz Group

Having the generation of any representation we can know the Lie
algebra of the Lorentz Group.

[Ji7 JJ] = Z'Eiijk
[Ji, KJ] = ieiijk
(K, K] = —ieijnJi

We can be even more efficient writing as a rank-2 tensor representation

[V;Luv Vpa} =1 (V,uanup + Vupn;ur - V,upnl/a - Vuanup) .

Where V,,,, is

0 K, K, Ks
—K; 0 J3  —Js
—Ky —J3 0 Ji
-K3; Jo —J 0

Vu v =

So now we can define the Lorentz group as the set of transformations
generated by these generators.
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(J; +1iK;) J; = 3 (J; —iK;)
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Generators of the Lorentz Group

We can define a "suspicious” combinations of these two sets of
generators as

1
JF = (Ji +iK;) I =5 (J; —iK;)

N |

Which satisfy the commutation relations,

(737, T ] = i

J
[J;7 J;] - ieiij,;
[, 7] =0

Black magic! We now see that the algebra of these generators
decouple into two SU(2) algebras.
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Representations of the Lorentz group

Representations of the Lie algebra of the Lorentz group

j+

J

Reps

Dim

Field

= O N ON= O

= = OO O

(=)

~— — — S T —

= = OnoNI= O

~ e~ o~ TN N~ o~
— O =N OO

1

© W Wk NN

Scalar or Singlet
Left handed Weyl spinor
Right handed Weyl spinor
Vector
Self-dual 2-form field
Anti-self-dual 2-form field
Traceless symmetric tensor field.
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Generatorsiof Representations of the Lie algebra of the Lorentz group
c 715 | Reps | Dim Field
St 0| 0| (0,0 1 Scalar or Singlet
of the 3101 (30 2 Left handed Weyl spinor
Pré 0 % (0, %) 2 Right handed Weyl spinor
Group 13 1G5 4 Vector

110 | (1,0 3 Self-dual 2-form field

0 1] (0,1) 3 Anti-self-dual 2-form field

1 1| (1,1) 9 | Traceless symmetric tensor field.

e (3,0)® (0, 3) is a Dirac spinor

(]
—~

—

(=)

) @ (0,1) is the electromagnetic field tensor F,,

We can label the representations of so(3,1) by the weights (quantum
numbers) of su(2) ® su(2)
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We have a problem

Lorentz group are not unitary and that is a deal braking for Physics
because we really really like unitary for Quantum Field Theory. Where
we were wrong?

It all comes from the factor of ¢ associated with boosts. Or in other
words, The precise relationship between the two groups are that the
complex linear combinations (complexification) of the generators of the
Lorentz algebra to SU(2) x SU(2).
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Gperators The Poincaré group, as the Lorentz group, preserve the line element in
Minkowski space but now with the translations, :

aHt — a'F = ABaY + o

(A1, a1) - (Ag, a2) = (A2, Asaq + a2)

The Poincaré group has 10 parameters: 6 from a Lorentz and 4 from
translations

a
ol
n(a,A) = A az
a

00 0 0 1
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The Poincaré group is represented by the algebra
Vs Vool = (Viaup + Viptiuoe — Viplive — Voatlup)
[Plu PV] =0
[V,“,, PJ] i (P'n"7 — P"n"?)
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Wigner, on a paper 1939, gave us a method to classify all reducible
representations of the Poincaré group by considering the little group of
a quantum eigenstate with definite momentum P2. In the literature is
called: Classification of representations by orbits.

Po P? P* Little Group
m m? (m,0,0,0) SO(3)
-m | m? (—m,0,0,0) SO(3)
Pl o | dpLoole) | Ee)
QP o | G0 Py | B
0 —m? (0,0,0,m) SO(2,1)
0o | o0 (0,0,0,0) S0(3,1)




Casimir Operators

Lorentz Group

Poincaré
Group

Casimir

- Finally, there are only two invariants in the Poincaré group that
commute with all generators. The first Casimir invariant C7 is
associated with the mass invariance, and the second Casimir invariant
C5, refers to spin invariance.

Cy = P"P,
Cy =W, Wt
Where W, is the Pauli-Lubanski (pseudo) vector defined by

1
Wi = 5€upa PPV

A particle with fix energy | m, s; P*, o)
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